Nearest-neighbour distribution function for systems on interacting particles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 23 L103
(http://iopscience.iop.org/0305-4470/23/3/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 09:56

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Nearest-neighbour distribution function for systems of interacting particles

S Torquato \dagger, B Lu \ddagger and J Rubinstein§
† Departments of Mechanical and Aerospace Engineering and of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA
\ddagger Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA
§ Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel

Received 17 August 1989

Abstract

One of the basic quantities characterising a system of interacting particles is the nearest-neighbour distribution function $H(r)$. We give a general expression for $H(r)$ for a distribution of D-dimensional spheres which interact with an arbitrary potential. Specific results for $H(r)$ are obtained, for the first time, for D-dimensional hard spheres with $D=1$, 2 and 3. Our results for $D=3$ are shown to be in excellent agreement with Monte Carlo computer-simulation data for a wide range of densities. From $H(r)$, one can determine other quantities of fundamental interest such as the mean nearest-neighbour distance and the random close-packing density.

In considering systems composed of many interacting particles, a key fundamental question to ask is: what is the effect of the nearest neighbour on some reference particle in the system? The answer to this query requires knowledge of the nearest-neighbour distribution function $H(r)$, i.e. the probability density associated with finding a nearest neighbour at some given distance r from the reference particle. From $H(r)$ one can determine other quantities of fundamental interest such as the mean nearest-neighbour distance and the random close-packing density. Knowing $H(r)$ is of importance in a host of problems in the physical and biological sciences, including liquids and amorphous solids [1-5], transport properties of suspensions and composite materials [6-8], stellar dynamics [9], and the structure of some cell membranes [10], to mention but a few examples. It should be emphasised that $H(r)$ is different from the well known radial distribution function. The latter quantity is proportional to the probability of finding any particle (not necessarily the nearest one) a distance r away from a central particle.

Hertz [11] apparently was the first to consider the evaluation of $H(r)$ for a system of 'point' particles, i.e. particles whose centres are randomly (Poisson) distributed. The D-dimensional generalisation of Hertz's [11] solution of $H(r)$ for Poisson distributed points, at number density ρ, is given by

$$
\begin{equation*}
H(r)=\rho \frac{\mathrm{d} v_{D}(r)}{\mathrm{d} r} \exp \left[-\rho v_{D}(r)\right] \tag{1}
\end{equation*}
$$

where $v_{D}(r)$ is the volume of a D-dimensional sphere of radius $r\left(v_{1}(r)=2 r, v_{2}(r)=\pi r^{2}\right.$, $\left.v_{3}(r)=\frac{4}{3} \pi r^{3}\right)$.

Interestingly, there is currently no theoretical formalism to obtain and compute $H(r)$ for distributions of finite-sized interacting particles at arbitrary density \dagger. In this letter, we briefly describe such general results for D-dimensional spheres. We then specifically determine $H(r)$ and the mean nearest-neighbour distance for D dimensional random arrays of impenetrable spheres of diameter σ as a function of density. (The rather lengthy derivation of all the theoretical results given here and the calculation of functions closely related to $H(r)$ will be described in detail elsewhere [13].) The case $D=1$ (hard rods) may serve as a useful model of various types of layered media [14]. The case $D=2$ (hard discs) is a reasonable model of fibrereinforced materials [15], thin films [15], certain types of cell membranes [10], etc. The case $D=3$ (hard spheres) has probably the widest application as it can be used to model liquids [1, 2, 16], amorphous solids [2-5], suspensions [6], porous media [7,8], particulate composites [17], powders [18], etc.

We have derived an exact analytical representation of $H(r)$ for homogeneous distributions of identical interacting D-dimensional spheres of diameter σ at number density ρ in terms of the so-called n-particle probability density functions $\rho_{1}, \rho_{2}, \ldots, \rho_{n}$. It is found [13] that

$$
\begin{equation*}
H(r)=\sum_{k=1}^{\infty}(-1)^{k+1} H^{(k)}(r) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
H^{(k)}(r)=\frac{1}{k!} \frac{\partial}{\partial r} \int \rho_{k+1}\left(\boldsymbol{R}^{k+1}\right) \prod_{i=2}^{k+1} m\left(\left|\boldsymbol{R}_{1}-\boldsymbol{R}_{i}\right| ; r\right) \mathrm{d} \boldsymbol{R}_{i} \tag{3}
\end{equation*}
$$

with

$$
m(y ; r)= \begin{cases}1 & y \leqslant r \tag{4}\\ 0 & y>r\end{cases}
$$

The quantity $\rho_{n}\left(\boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{n}\right)$ characterises the probability of finding a configuration of n spheres with centres at positions $\boldsymbol{R}^{n} \equiv \boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{n}$, respectively, and is given information for the statistical ensemble under consideration. For spatially uncorrelated centres (Posson distribution), ρ_{n} is trivially a constant equal to ρ^{n} and our expression leads to the simple formula (1). On the other hand, if the particles are mutually impenetrable, then the ρ_{n} are generally quite complicated [16].

For the case of hard rods $(D=1)$, the ρ_{n}, for any n, are known exactly for equilibrium distributions [19]. Our relation for H then yields the exact dimensionless result

$$
\begin{equation*}
\sigma H(x)=\frac{2 \eta}{1-\eta} \exp \left(\frac{-2 \eta(x-1)}{1-\eta}\right) \quad x>1 \tag{5}
\end{equation*}
$$

where $x=r / \sigma$ is a scaled distance and $\eta=\rho v_{1}(\sigma / 2)=\rho \sigma$ is a reduced density. For $x<1, H(x)=0$ in any dimension.

For the cases of $D=2$ and $D=3$, however, the two-particle probability density ρ_{2} (or equivalently, the radial distribution function) is only known approximately for

[^0]arbitrary density, albeit accurately [16]; the higher-order $\rho_{n}(n \geqslant 3)$ are generally never known. This implies that an exact solution of $H(r)$ for $D=2$ and 3 under general conditions is out of the question. For $D=2$ and 3 , therefore, we have devised schemes to approximately sum the series using statistical mechanical theory [13] and found
$\sigma H(x)=\frac{4 \eta(2 x-\eta)}{(1-\eta)^{2}} \exp \left(\frac{-4 \eta}{(1-\eta)^{2}}\left[\left(x^{2}-1\right)+\eta(x-1)\right]\right) \quad x>1$
for hard discs $(D=2)$, where $\eta=\rho v_{2}(\sigma / 2)$, and
$\sigma H(x)=24 \eta\left(e x^{2}+f x+g\right) \exp \left\{-\eta\left[8 e\left(x^{3}-1\right)+12 f\left(x^{2}-1\right)+24 g(x-1)\right]\right\} \quad x>1$
for hard spheres $(D=3)$, where $\eta=\rho v_{3}(\sigma / 2)$ and
\[

$$
\begin{equation*}
e=\frac{1+\eta}{(1-\eta)^{3}} \quad f=\frac{-\eta(3+\eta)}{2(1-\eta)^{3}} \quad g=\frac{\eta^{2}}{2(1-\eta)^{3}} \tag{8}
\end{equation*}
$$

\]

It should be emphasised that the relations (5), (6), and (7) for $D=1, D=2$, and $D=3$, respectively, are new, i.e. it is the first time that expressions for $H(r)$ valid for D-dimensional hard-sphere systems at arbitrary density have been given.

In figure 1 we plot $H(r)$ for distributions of D-dimensional impenetrable spheres at a sphere volume fraction $\phi=\eta=0.2$. Of course, for $r<\sigma, H(r)=0$ for any D. For r near σ, the effect of increasing the dimensionality is to increase $H(r)$, i.e. the likelihood of finding a nearest neighbour at such r increases with increasing D. Consistent with this behaviour is a decrease of $H(r)$ with increasing D for large r.

Figure 1. The dimensionless nearest-neighbour distribution function $\sigma H(r)$ for distributions of identical D-dimensional impenetrable spheres of diameter σ at a D-dimensional particle volume fraction $\phi=0.2$. Results for $D=1,2$ and 3 are obtained from (5), (6) and (7), respectively. For impenetrable spheres, the D-dimensional volume fraction ϕ equals the D-dimensional reduced density $\eta=$ $\rho v_{D}(\sigma / 2)$, where $v_{D}(r)$ is the D-dimensional volume of a sphere of radius r described in the text and ρ is the particle number density.

Figure 2. The dimensionless nearest-neighbour distribution function $\sigma H(r)$ for penetrable discs (Poisson distributed 'point' particles) and impenetrable discs of diameter σ as calculated from (1) and (6), respectively, at a particle area fraction $\phi=0.3$. For D-dimensional penetrable spheres, the sphere volume fraction $\phi=1-\exp (-\eta)$. Exclusion-volume effects associated with the hard cores considerably change the behaviour of $h(r)$ relative to the idealised case of point particles. $H(r)$ behaves qualitatively the same for these models in any dimension.

What is the effect of impenetrability of the spheres on $H(r)$? In figure 2 we compare Hertz's result (1) for Poisson distributed centres in two-dimensional space with our new result (6) for two-dimensional impenetrable discs at a disc area fraction $\phi=0.2$. Note that exclusion-volume effects associated with hard cores lead to a nearestneighbour distribution function which is strikingly different to the corresponding quantity for spatially uncorrelated discs. For $r<\sigma$, unlike hard discs, $H(r) \neq 0$ for penetrable discs since their centres can come arbitrarily close to one another. For large $r, H(r)$ for penetrable discs is larger than $H(r)$ for impenetrable discs since in the former system one is more likely to find larger 'void' regions surrounding the central particle as the result of interparticle overlap. The behaviour of $H(r)$ for these models for any D is qualitatively the same.

Monte Carlo computer simulations in three dimensions have been carried out by Torquato and Lee [20] to obtain, among other quantities, $H(r)$. A standard Metropolis [16] algorithm was employed to generate 200-6000 different realisations of 500 impenetrable spheres in a cubical cell with periodic boundary conditions. Figure 3 compares the simulation results with our relation (4) for $\phi=0.2$ and $\phi=0.5$. The agreement is seen to be excellent. In fact, one finds relatively good agreement up to $\phi=0.6$, which is very close to the random close-packing volume fraction ϕ_{c}, estimated to range from $0.62-0.66[2,4]$. In conclusion, this verifies the accuracy of the three-dimensional expression (7) (as well as the two-dimensional expression which is based on a similar approximation scheme) up to densities near the close-packing value (see discussion below).

Another important measure is the 'mean nearest-neighbour distance' l defined as

$$
\begin{equation*}
l=\int_{0}^{\infty} r H(r) \mathrm{d} r . \tag{9}
\end{equation*}
$$

Figure 3. The dimensionless nearest-neighbour distribution function $\sigma H(r)$ for three-dimensional hard spheres of diameter σ at values of the sphere volume fraction $\phi=\eta=0.3$ and 0.5 . Full curves are computed from relation (7) and circles and squares are Monte Carlo computer-simulation data. Observe the excellent agreement of the theory with the simulation data. For r near $\sigma, H(r)$ increases with increasing ϕ, as expected. for large $r, H(r)$ decreases with increasing ϕ for similar reasons.

Figure 4. The dimensionless mean nearest-neighbour distance I / σ as a function of the inverse volume fraction ϕ^{-1} for distributions of D-dimensional impenetrable spheres with $D=1,2$ and 3 .

An operational definition for the random close-packing volume fraction ϕ_{c}, a quantity of great fundamental interest [2-5], then follows, i.e. the volume fraction at which $l=\sigma$. We have computed (9) for D-dimensional hard spheres using the exact formula (5) and the approximate relations (6) and (7) as a function of the D-dimensional inverse volume fraction ϕ^{-1}. These results are summarised in figure 4. As expected, at fixed ϕ, l increases with increasing D. Unlike our exact one-dimensional result which correctly predicts $\phi_{c}=1$, our two-dimensional and three-dimensional results for l cannot correctly predict the 'critical' point ϕ_{c}. This is not surprising considering the difficulty of predicting ϕ_{c} for $D=2$ and 3 (heretofore this problem has defined an exact analytical solution) and because our approximations are 'mean field' in nature and hence cannot accurately predict critical points [5]. Our plots of l / σ as a function of ϕ^{-1} are approximately linear over the entire range of ϕ, except for the near vicinity of ϕ_{c}. Interestingly, extrapolation of these two-dimensional and three-dimensional data (using the linear range) to the limit $l / \sigma=1$, yields values of ϕ_{c} which fall within the respective estimated ranges [4] (for $D=2, \phi_{c}=0.82 \pm 0.02$). Such linear extrapolations, however, are somewhat arbitrary. In future work we shall study methods for improving our approximations (6) and (7) in the near-critical region.

ST and BL gratefully acknowledge the support of the Office of Basic Energy Sciences, US Department of Energy, under Grant no DE-FG05-86ER 13842.

References

[1] Bernal J D 1964 Proc. R. Soc. A 280299
[2] Finney J L 1970 Proc. R. Soc. A 319479
[3] Zallen R 1983 The Physics of Amorphous Solids (New York: Wiley)
[4] Berryman J G 1983 Phys. Rev. A 271053
[5] Song Y, Stratt R M and Mason E A 1988 J. Chem. Phys. 881126
[6] Keller J B, Rubenfeld L A and Molyneux J E 1967 J. Fluid Mech. 3097
[7] Rubinstein J and Torquato S 1989 J. Fluid Mech. 20625
[8] Rubinstein J and Torquato S 1988 J. Chem. Phys. 886372
[9] Chandrasekhar S 1943 Rev. Mod. Phys. 151
[10] Cornell B A, Middlehurst J and Parker N S 1981 J. Colloid Interface Sci. 81280
[11] Hertz P 1909 Math. Ann. 67387
[12] Reiss H, Frisch H L and Lebowitz J L 1959 J. Chem. Phys. 31369
[13] Torquato S, Lu B and Rubinstein J 1990 Phys. Rev. A in press
[14] Torquato S and Lado F 1985 J. Phys. A: Math. Gen. 18141
[15] Torquato S and Lado F 1988 Proc. R. Soc. A 41759
[16] Hansen J P and McDonald I R 1976 Theory of Simple Liquids (London: Academic)
[17] Torquato S and Lado F 1986 Phys. Rev. B 336428
[18] Shahinpoor M 1980 Powder Technol. 25163
[19] Salsburg Z W, Zwanzig R W and Kirkwood J G 1953 J. Chem. Phys. 211098
[20] Torquato S and Lee S B Preprint

[^0]: \dagger The nearest-neighbour distribution function $H(r)$ defined here should not be confused with the one defined by Reiss et al [12] in their scaled-particle theory. Whereas the former considers nearest neighbours around an actual inclusion centred at the origin, the latter considers nearest neighbours at a radial distance from the centre of a spherical cavity empty of sphere centres. The distinction between these two different types of nearest-neighbour distribution functions is fully detailed in [13].

