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Abstract. One of the basic quantities characterising a system of interacting particles is the 
nearest-neighbour distribution function H ( r ) .  We give a general expression for H ( r )  for 
a distribution of D-dimensional spheres which interact with an arbitrary potential. Specific 
results for H (  r )  are obtained, for the first time, for D-dimensional hard spheres with D = 1 ,  
2 and 3. Our results for D = 3 are shown to be in excellent agreement with Monte Carlo 
computer-simulation data for a wide range of densities. From H ( r ) ,  one can determine 
other quantities of fundamental interest such as the mean nearest-neighbour distance and 
the random close-packing density. 

In considering systems composed of many interacting particles, a key fundamental 
question to ask is: what is the effect of the nearest neighbour on some reference particle 
in the system? The answer to this query requires knowledge of the nearest-neighbour 
distribution function H( r ) ,  i.e. the probability density associated with finding a nearest 
neighbour at some given distance r from the reference particle. From H ( r )  one can 
determine other quantities of fundamental interest such as the mean nearest-neighbour 
distance and the random close-packing density. Knowing H ( r )  is of importance in a 
host of problems in the physical and biological sciences, including liquids and amor- 
phous solids [ 1-51, transport properties of suspensions and composite materials [6-81, 
stellar dynamics [9], and the structure of some cell membranes [lo], to mention but 
a few examples. It should be emphasised that H ( r )  is diferent from the well known 
radial distribution function. The latter quantity is proportional to the probability of 
finding any particle (not necessarily the nearest one) a distance r away from a central 
particle. 

Hertz [ 111 apparently was the first to consider the evaluation of H( r )  for a system 
of ‘point’ particles, i.e. particles whose centres are randomly (Poisson) distributed. 
The D-dimensional generalisation of Hertz’s [ 111 solution of H( r)  for Poisson dis- 
tributed points, at number density p, is given by 

where uD( r )  is the volume of a D-dimensional sphere of radius r (U,( r )  = 2r, u2( r )  = ~ r * ,  
u3( r )  = $m3). 
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Interestingly, there is currently no theoretical formalism to obtain and compute 
H (  r) for distributions of Jinite-sized interacting particles at arbitrary densityt. In this 
letter, we briefly describe such general results for D-dimensional spheres. We then 
specifically determine H (  r) and the mean nearest-neighbour distance for D- 
dimensional random arrays of impenetrable spheres of diameter a as a function of 
density. (The rather lengthy derivation of all the theoretical results given here and the 
calculation of functions closely related to H (  r) will be described in detail elsewhere 
[13].) The case D = 1 (hard rods) may serve as a useful model of various types of 
layered media [14]. The case D = 2  (hard discs) is a reasonable model of fibre- 
reinforced materials [15], thin films [15], certain types of cell membranes [lo], etc. 
The case D = 3  (hard spheres) has probably the widest application as it can be used 
to model liquids [ l ,  2, 161, amorphous solids [2-51, suspensions [6], porous media 
[7,8], particulate composites [ 171, powders [ 181, etc. 

We have derived an exact analytical representation of H (  r )  for homogeneous 
distributions of identical interacting D-dimensional spheres of diameter a at number 
density p in terms of the so-called n-particle probability density functions p1 , pz ,  . . . , p,. 
It is found [13] that 

where 
k +  I 

k! dr i = 2  
H ( k ) ( r ) = L A j  P ~ + ~ ( R ~ + ' )  n m(JR,-RiI; r )dRi  

with 

(3) 

The quantity p n ( R I , .  . . , R,) characterises the probability of finding a configuration 
of n spheres with centres at positions R" = R I , .  . . , R,, respectively, and is given 
information for the statistical ensemble under consideration. For spatially uncorrelated 
centres (Posson distribution), p, is trivially a constant equal to p" and our expression 
leads to the simple formula (1). On the other hand, if the particles are mutually 
impenetrable, then the pn are generally quite complicated [ 161. 

For the case of hard rods ( D  = l ) ,  the p,, for any n, are known exactly for equilibrium 
distributions [19]. Our relation for H then yields the exact dimensionless result 

a ~ ( x ) = - e x p (  277 -27(x - 1 )  ) x > l  
1-77 1-77 

where x = r / u  is a scaled distance and 77 = p u l ( a / 2 )  = p a  is a reduced density. For 
x < 1, H ( x )  = 0 in any dimension. 

For the cases of D = 2 and D = 3, however, the two-particle probability density pz 
(or equivalently, the radial distribution function) is only known approximately for 

t The nearest-neighbour distribution function H ( r )  defined here should not be confused with the one defined 
by Reiss el a/ [I21 in their scaled-particle theory. Whereas the former considers nearest neighbours around 
an actual inclusion centred at the origin, the latter considers nearest neighbours at a radial distance from 
the centre of a spherical cavity empty of sphere centres. The distinction between these two different types 
of nearest-neighbour distribution functions is fully detailed in [ 131. 
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arbitrary density, albeit accurately [ 161; the higher-order pn( n 3 3) are generally never 
known. This implies that an exact solution of H ( r )  for D = 2 and 3 under general 
conditions is out of the question. For D = 2 and 3, therefore, we have devised schemes 
to approximately sum the series using statistical mechanical theory [13] and found 

for hard discs ( D  = 2), where 71 = pv2( a/2), and 

o H (  x)  = 2471 ( ex2 + f x  + g) exp{ -T[ 8e(  x3 - 1) + 12f (x’ - 1) + 24g(x - l ) ] }  x > l  
(7) 

for hard spheres ( D  = 3), where = pv3(a/2) and 

It should be emphasised that the relations ( 5 ) ,  (6), and (7) for D =  1, D = 2 ,  and 
D = 3, respectively, are new, i.e. it is the first time that expressions for H( r )  valid for 
D-dimensional hard-sphere systems at arbitrary density have been given. 

In figure 1 we plot H (  r )  for distributions of D-dimensional impenetrable spheres 
at a sphere volume fraction 4 = 71 = 0.2. Of course, for r < a, H( r )  = 0 for any D. For 
r near U, the effect of increasing the dimensionality is to increase H (  r ) ,  i.e. the likelihood 
of finding a nearest neighbour at such r increases with increasing D. Consistent with 
this behaviour is a decrease of H ( r )  with increasing D for large r. 

f/U 

Figure 1. The dimensionless nearest-neighbour dis- 
tribution function vH( r )  for distributions of iden- 
tical D-dimensional impenetrable spheres of 
diameter U at a D-dimensional particle volume frac- 
tion @ = 0.2. Results for D = 1, 2 and 3 are obtained 
from ( 5 ) ,  (6) and ( 7 ) ,  respectively. For impenetrable 
spheres, the D-dimensional volume fraction @ 
equals the D-dimensional reduced density q = 
p u D ( u / 2 ) ,  where u D ( r )  is the D-dimensional volume 
of a sphere of radius r described in the text and p 
is the particle number density. 

r / a  
Figure 2. The dimensionless nearest-neighbour dis- 
tribution function a H ( r )  for penetrable discs 
(Poisson distributed ‘point’ particles) and impene- 
trable discs of diameter U as calculated from (1) and 
( 6 ) ,  respectively, at a particle area fraction @ = 0.3. 
For D-dimensional penetrable spheres, the sphere 
volume fraction @ = 1 -exp(-v). Exclusion-volume 
effects associated with the hard cores considerably 
change the behaviour of h ( r )  relative to the idealised 
case of point particles. H ( r )  behaves qualitatively 
the same for these models in any dimension. 
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What is the effect of impenetrability of the spheres on H (  r )?  In figure 2 we compare 
Hertz’s result (1) for Poisson distributed centres in two-dimensional space with our 
new result (6) for two-dimensional impenetrable discs at a disc area fraction 4 = 0.2. 
Note that exclusion-volume effects associated with hard cores lead to a nearest- 
neighbour distribution function which is strikingly different to the corresponding 
quantity for spatially uncorrelated discs. For r < a, unlike hard discs, H (  r) # 0 for 
penetrable discs since their centres can come arbitrarily close to one another. For 
large r, H ( r )  for penetrable discs is larger than H ( r )  for impenetrable discs since in 
the former system one is more likely to find larger ‘void’ regions surrounding the 
central particle as the result of interparticle overlap. The behaviour of H ( r )  for these 
models for any D is qualitatively the same. 

Monte Carlo computer simulations in three dimensions have been carried out by 
Torquato and Lee [20] to obtain, among other quantities, H( r ) .  A standard Metropolis 
[ 161 algorithm was employed to generate 200-6000 different realisations of 500 impen- 
etrable spheres in a cubical cell with periodic boundary conditions. Figure 3 compares 
the simulation results with our relation (4) for 4 = 0.2 and 4 = 0.5. The agreement is 
seen to be excellent. In fact, one finds relatively good agreement up to 4 = 0.6, which 
is very close to the random close-packing volume fraction &, estimated to range from 
0.62-0.66 [2,4]. In conclusion, this verifies the accuracy of the three-dimensional 
expression (7) (as well as the two-dimensional expression which is based on a similar 
approximation scheme) up to densities near the close-packing value (see discussion 
below). 

Another important measure is the ‘mean nearest-neighbour distance’ 1 defined as 

( 9 )  1 = lom rH(r)  dr. 

r /a 119 
Figure 3. The dimensionless nearest-neighbour dis- 
tribution function u H ( r )  for three-dimensional hard 
spheres of diameter U at values of the sphere volume 
fraction 6 = q =0.3 and 0.5. Full curves are com- 
puted from relation (7) and circles and squares are 
Monte Carlo computer-simulation data. Observe the 
excellent agreement of the theory with the simulation 
data. For r near U, H ( r )  increases with increasing 
4, as expected. for large r, H ( r )  decreases with 
increasing 4 for similar reasons. 

Figure 4. The dimensionless mean nearest-neighbour 
distance / lo  as a function of the inverse volume 
fraction 4-l for distributions of D-dimensional 
impenetrable spheres with D = 1, 2 and 3. 
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An operational definition for the random close-packing volume fraction &, a quantity 
of great fundamental interest [2-51, then follows, i.e. the volume fraction at which 
1 = W. We have computed (9) for D-dimensional hard spheres using the exact formula 
( 5 )  and the approximate relations (6) and (7) as a function of the D-dimensional 
inverse volume fraction 4-’, These results are summarised in figure 4. As expected, 
at fixed 6, 1 increases with increasing D. Unlike our exact one-dimensional result 
which correctly predicts 4, = 1, our two-dimensional and three-dimensional results for 
1 cannot correctly predict the ‘critical’ point 6,. This is not surprising considering the 
difficulty of predicting r # ~ ~  for D = 2 and 3 (heretofore this problem has defined an 
exact analytical solution) and because our approximations are ‘mean field’ in nature 
and hence cannot accurately predict critical points [ 5 ] .  Our plots of l / w  as a function 
of 4-l are approximately linear over the entire range of 4, except for the near vicinity 
of 4c. Interestingly, extrapolation of these two-dimensional and three-dimensional 
data (using the linear range) to the limit l /a  = 1, yields values of 4, which fall within 
the respective estimated ranges [4] (for D = 2, 6c = 0.82 f 0.02). Such linear extrapola- 
tions, however, are somewhat arbitrary. In future work we shall study methods for 
improving our approximations (6) and (7) in the near-critical region. 

ST and BL gratefully acknowledge the support of the Office of Basic Energy Sciences, 
US Department of Energy, under Grant no DE-FG05-86ER 13842. 
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